max
کاربر فعال
- ارسالها
- 40
- امتیاز
- 6
در ریاضیات دنباله فیبوناچی به دنبالهای از اعداد گفته میشود که بصورت زیر تعریف میشود:
غیر از دو عدد اول اعداد بعدی از جمع دو عدد قبلی خود بدست میآید. اولین اعداد این سری عبارتاند از:
۰, ۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴, ۴۱۸۱, ۶۷۶۵, ۱۰۹۴۶
این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شدهاست.فهرست مندرجات [نمایش]
دنباله فیبوناچی
در دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود در یکی از همین مسابقات که در سال ۱۲۲۵ در شهر پیزا توسط امپراتور فردریک دوم برگزار شده بود مسئله زیر مطرح شد:
«فرض کنیم خرگوشهایی وجود دارند که هر جفت (یک نر و یک ماده) از آنها که به سن ۱ ماهگی رسیده باشند به ازاء هر ماه که از زندگیشان سپری شود یک جفت خرگوش متولد میکنند که آنها هم از همین قاعده پیروی میکنند حال اگر فرض کنیم این خرگوشها هرگز نمیمیرند و در آغاز یک جفت از این نوع خرگوش در اختیار داشته باشیم که به تازگی متولد شدهاند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت.»
فرض کنیم xn تعداد جفت خرگوش پس از n ماه باشد، میدانیم که x۲=۱,x۱=۱، تعداد جفت خرگوشها در ماه n+۱ ام برابر خواهد بود با حاصلجمع تعداد جفت خرگوشهایی که در این ماه متولد میشوند با تعداد جفت خرگوشهای موجود(xn).اما چون هر جفت خرگوش که از دو ماه قبل موجود بوده هم اکنون حداقل دوماه سن خواهند داشت و به سن زادو ولد رسیدهاند تعداد جفت خرگوشهای متولد شده برابر خواهد بود با xn-۱، پس خواهیم داشت :
x۱ = ۱ , x۲ = ۱ , xn + ۱ = xn + xn - ۱
که اگر از قواعد مذکور پیروی کنیم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است.
۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,…
فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفتانگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضیدانان بلکه دانشمندان بسیاری از رشتههای دیگر را به خود جلب کرده.
ارتباط عدد طلایی با دنباله فیبوناچی
روشهای متفاوتی برای بیان رابطه بین عدد طلایی و دنباله فیبوناچی وجود دارد که ما در اینجا به دو نمونه بسنده می کنیم.
نسبت دو عضو متوالی دنباله
اولین مطلبی که در زمینه ارتباط با دنباله فیبوناچی قابل ذکر است به این قرار است: دنباله را بار دیگر در نظر می بینیم:
۱۰-------۹--------۸--------۷---------۶-------۵-------۴-------۳-------۲-------۱-------شماره جمله
۵۵------۳۴------۲۱-------۱۳-------۸-------۵-------۳-------۲-------۱-------۱-------مقدار جمله
نسبت جمله دوم به اول برابر است با ۱
نسبت جمله سوم به دوم برابر است با ۲
نسبت جمله چهارم به سوم برابر است با ۱٫۵
نسبت جمله پنجم به چهارم برابر است با ۱٫۶۶
نسبت جمله ششم به پنجم برابر است با ۱٫۶
نسبت جمله هفتم به ششم برابر است با ۱٫۶۲۵
نسبت جمله هشتم به هفتم برابر است با ۱٫۶۱۵
نسبت جمله نهم به هشتم برابر است با ۱٫۶۱۹
نسبت جمله دهم به نهم برابر است با ۱٫۶۱۷
به نظر می رسد که این رشته به عدد طلایی نزدیک می شود. اگر نسبت عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد ۱٫۶۱۸۰۳۳۹۸۸۷۴۹۸۹۵ می رسیم که با تقریب ۱۴ رقم اعشار نسبت طلایی را نشان می دهد. نسبت جملات متوالی به عدد طلایی میل می کند.
معادله خط
معادله ی خطی به صورت y=mx در نظر می گیریم. m به معنی شیب خط است و یک عدد حقیقی است. می دانیم اگر m گنگ باشد، خط y=mx از هیچ نقطه ای با مختصات صحیح عبور نخواهد کرد. در واقع این خط امکان ندارد از نقطهای (جز مبدأ) عبور کند که هم x و هم y آن عدد صحیح باشند. حال به جای m قرار می دهیمφ. یعنی خط y=φx را در نظر می گیریم. چون φ هم یک عدد گنگ است، این خط از هیچ نقطه ای با x و y صحیح (جز مبدأ) عبور نخواهد کرد. به همین دلیل نقطه هایی را با x و y صحیح در نظر می گیریم که کمترین فاصله را از این خط دارند. ابتدا به نظر می رسد نقطه ی (۱،۱) کمترین فاصله را با این خط دارد. ولی فاصله ی نقطه ی (۲،۱) از این خط کمتر است. نقطه ی (۳،۲) فاصله ی کمتری با این خط دارد. همچنین فاصله ی نقطه ی (۵،۳) از این هم کمتر است. این نقاط به همین ترتیب ادامه خواهند یافت و در زیر چند نقطه ی بعدی را که فاصله شان از این خط کمتر می شود را می بینید:
. . . ، (۵،۳۴) ، (۳۴،۲۱) ، (۲۱،۱۳) ، (۱۳،۸) ، (۸،۵) ، (۵،۳) ، (۳،۲) ، (۲،۱) ، (۱،۱)
صحت مطالب فوق به راحتی قابل بررسی است. با کمی دقت در مختصات این نقاط درخواهیم یافت که این مختصات از الگوی دنباله فیبوناچی پیروی می کنند . این نقاط را نقاط فیبوناچی می نامند.
source:wikipedia
غیر از دو عدد اول اعداد بعدی از جمع دو عدد قبلی خود بدست میآید. اولین اعداد این سری عبارتاند از:
۰, ۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴, ۴۱۸۱, ۶۷۶۵, ۱۰۹۴۶
این اعداد به نام لئوناردو فیبوناچی ریاضیدان ایتالیایی نام گذاری شدهاست.فهرست مندرجات [نمایش]
دنباله فیبوناچی
در دوران حیات فیبوناچی مسابقات ریاضی در اروپا بسیار مرسوم بود در یکی از همین مسابقات که در سال ۱۲۲۵ در شهر پیزا توسط امپراتور فردریک دوم برگزار شده بود مسئله زیر مطرح شد:
«فرض کنیم خرگوشهایی وجود دارند که هر جفت (یک نر و یک ماده) از آنها که به سن ۱ ماهگی رسیده باشند به ازاء هر ماه که از زندگیشان سپری شود یک جفت خرگوش متولد میکنند که آنها هم از همین قاعده پیروی میکنند حال اگر فرض کنیم این خرگوشها هرگز نمیمیرند و در آغاز یک جفت از این نوع خرگوش در اختیار داشته باشیم که به تازگی متولد شدهاند حساب کنید پس از n ماه چند جفت از این نوع خرگوش خواهیم داشت.»
فرض کنیم xn تعداد جفت خرگوش پس از n ماه باشد، میدانیم که x۲=۱,x۱=۱، تعداد جفت خرگوشها در ماه n+۱ ام برابر خواهد بود با حاصلجمع تعداد جفت خرگوشهایی که در این ماه متولد میشوند با تعداد جفت خرگوشهای موجود(xn).اما چون هر جفت خرگوش که از دو ماه قبل موجود بوده هم اکنون حداقل دوماه سن خواهند داشت و به سن زادو ولد رسیدهاند تعداد جفت خرگوشهای متولد شده برابر خواهد بود با xn-۱، پس خواهیم داشت :
x۱ = ۱ , x۲ = ۱ , xn + ۱ = xn + xn - ۱
که اگر از قواعد مذکور پیروی کنیم به دنباله زیر خواهیم رسید که به دنباله فیبوناچی مشهور است.
۱, ۱, ۲, ۳, ۵, ۸, ۱۳, ۲۱, ۳۴, ۵۵, ۸۹, ۱۴۴, ۲۳۳, ۳۷۷, ۶۱۰, ۹۸۷, ۱۵۹۷, ۲۵۸۴,…
فیبوناچی با حل این مسئله از راه حل فوق دنباله حاصل را به جهان ریاضیات معرفی کرد که خواص شگفتانگیز و کاربردهای فراوان آن تا به امروز نه تنها نظر ریاضیدانان بلکه دانشمندان بسیاری از رشتههای دیگر را به خود جلب کرده.
ارتباط عدد طلایی با دنباله فیبوناچی
روشهای متفاوتی برای بیان رابطه بین عدد طلایی و دنباله فیبوناچی وجود دارد که ما در اینجا به دو نمونه بسنده می کنیم.
نسبت دو عضو متوالی دنباله
اولین مطلبی که در زمینه ارتباط با دنباله فیبوناچی قابل ذکر است به این قرار است: دنباله را بار دیگر در نظر می بینیم:
۱۰-------۹--------۸--------۷---------۶-------۵-------۴-------۳-------۲-------۱-------شماره جمله
۵۵------۳۴------۲۱-------۱۳-------۸-------۵-------۳-------۲-------۱-------۱-------مقدار جمله
نسبت جمله دوم به اول برابر است با ۱
نسبت جمله سوم به دوم برابر است با ۲
نسبت جمله چهارم به سوم برابر است با ۱٫۵
نسبت جمله پنجم به چهارم برابر است با ۱٫۶۶
نسبت جمله ششم به پنجم برابر است با ۱٫۶
نسبت جمله هفتم به ششم برابر است با ۱٫۶۲۵
نسبت جمله هشتم به هفتم برابر است با ۱٫۶۱۵
نسبت جمله نهم به هشتم برابر است با ۱٫۶۱۹
نسبت جمله دهم به نهم برابر است با ۱٫۶۱۷
به نظر می رسد که این رشته به عدد طلایی نزدیک می شود. اگر نسبت عدد چهلم این رشته را به عدد قبلی حساب کنیم به عدد ۱٫۶۱۸۰۳۳۹۸۸۷۴۹۸۹۵ می رسیم که با تقریب ۱۴ رقم اعشار نسبت طلایی را نشان می دهد. نسبت جملات متوالی به عدد طلایی میل می کند.
معادله خط
معادله ی خطی به صورت y=mx در نظر می گیریم. m به معنی شیب خط است و یک عدد حقیقی است. می دانیم اگر m گنگ باشد، خط y=mx از هیچ نقطه ای با مختصات صحیح عبور نخواهد کرد. در واقع این خط امکان ندارد از نقطهای (جز مبدأ) عبور کند که هم x و هم y آن عدد صحیح باشند. حال به جای m قرار می دهیمφ. یعنی خط y=φx را در نظر می گیریم. چون φ هم یک عدد گنگ است، این خط از هیچ نقطه ای با x و y صحیح (جز مبدأ) عبور نخواهد کرد. به همین دلیل نقطه هایی را با x و y صحیح در نظر می گیریم که کمترین فاصله را از این خط دارند. ابتدا به نظر می رسد نقطه ی (۱،۱) کمترین فاصله را با این خط دارد. ولی فاصله ی نقطه ی (۲،۱) از این خط کمتر است. نقطه ی (۳،۲) فاصله ی کمتری با این خط دارد. همچنین فاصله ی نقطه ی (۵،۳) از این هم کمتر است. این نقاط به همین ترتیب ادامه خواهند یافت و در زیر چند نقطه ی بعدی را که فاصله شان از این خط کمتر می شود را می بینید:
. . . ، (۵،۳۴) ، (۳۴،۲۱) ، (۲۱،۱۳) ، (۱۳،۸) ، (۸،۵) ، (۵،۳) ، (۳،۲) ، (۲،۱) ، (۱،۱)
صحت مطالب فوق به راحتی قابل بررسی است. با کمی دقت در مختصات این نقاط درخواهیم یافت که این مختصات از الگوی دنباله فیبوناچی پیروی می کنند . این نقاط را نقاط فیبوناچی می نامند.
source:wikipedia