• اگر سمپادی هستی همین الان عضو شو :

    ثبت نام عضویت

یک سوال احتمال

  • شروع کننده موضوع شروع کننده موضوع PARADISE
  • تاریخ شروع تاریخ شروع
پاسخ : یک سوال احتمال

به نقل از رشید شاملی :
بر اساس قانون کتاب جبر و احتمال دبیرستان فضای نمونه می شه18=3*6 و شکی در اون نیست.
قوانین احتمال می گه که اگه با هم تفاوت نداشته باشن فقط یک بار حساب می شن!
این برهان کاملن روشن و قاطع است و احتیاجی به توضیحم نداره!
امید وارم که سوال برات حل شده باشه چون خیلی سادست!
ولي من به نظريه ي خودم پايبندم.حتي اگه قوانين احتمالو نقض كنه.مگر اينكه كسي بم ثابت كنه كه دارم اشتبا ميكنم.من استدلالمو توضيح دادم و اميدوار بودم كه جوابمو تاييد كنين,نه اينكه بدون استدلال حرفمو رد كنين. شما چطور ميتونين با قاطعيت بگين كه همه ي علوم كاملند؟
 
پاسخ : یک سوال احتمال

به نقل از PARADISE :
ولي من به نظريه ي خودم پايبندم.حتي اگه قوانين احتمالو نقض كنه.مگر اينكه كسي بم ثابت كنه كه دارم اشتبا ميكنم.من استدلالمو توضيح دادم و اميدوار بودم كه جوابمو تاييد كنين,نه اينكه بدون استدلال حرفمو رد كنين. شما چطور ميتونين با قاطعيت بگين كه همه ي علوم كاملند؟
خب رشید راس می گه دیگه!!!!
جواب همون 18 تا می شه.
 
پاسخ : یک سوال احتمال

سلام دوستان!
من و Paradise با هم بحث كرديم و مطمئن شديم 18 غلطه!

من اومدم احتمال هر زوج رو بررسي كردم - اگه جواب 18 باشه يعني احتمال هر زوج مرتب ميشه 1/18.
اصلن فضاي نمونه بايد بشه 72 تا! (يعني دو تا ماتريس 6در 6)
يه بار تاس الف بعد تاس ب و بار ديگه تاس ب بعد الف.
چون توي سوال گفته نشده كدوم تاس اول انداخته ميشه.
اگه بخوايم احتمال برآمد (1و1) رو به دست بياريم ميشه 4/72 كه ميشه 1/18.
ولي احتمال برآمد (1و6) ميشه 2/72 كه ميشه 1/36.
نمي دونم الان چي فكر مي كنين؟ ولي الان ديگه 100 درصد مطمئن شدم 18 غلطه!
پس فضاي نمونه نمي تونه 18 باشه اگه فرض كنيم مي دونيم كدوم تاس رو اول انداختيم جواب بايد بشه 36.

حالا چي فكر ميكنين؟!
 
پاسخ : یک سوال احتمال

به نظر من درسته.من حواسم به این نبود.
 
پاسخ : یک سوال احتمال

به نقل از زرينه :
سلام دوستان!
من و Paradise با هم بحث كرديم و مطمئن شديم 18 غلطه!

من اومدم احتمال هر زوج رو بررسي كردم - اگه جواب 18 باشه يعني احتمال هر زوج مرتب ميشه 1/18.
اصلن فضاي نمونه بايد بشه 72 تا! (يعني دو تا ماتريس 6در 6)
يه بار تاس الف بعد تاس ب و بار ديگه تاس ب بعد الف.
چون توي سوال گفته نشده كدوم تاس اول انداخته ميشه.
اگه بخوايم احتمال برآمد (1و1) رو به دست بياريم ميشه 4/72 كه ميشه 1/18.
ولي احتمال برآمد (1و6) ميشه 2/72 كه ميشه 1/36.
نمي دونم الان چي فكر مي كنين؟ ولي الان ديگه 100 درصد مطمئن شدم 18 غلطه!
پس فضاي نمونه نمي تونه 18 باشه اگه فرض كنيم مي دونيم كدوم تاس رو اول انداختيم جواب بايد بشه 36.

حالا چي فكر ميكنين؟!
ها؟
شما ساله چندمی؟
 
پاسخ : یک سوال احتمال

به نقل از رشید شاملی :
ها؟
شما ساله چندمی؟
اگه اشتباه نكنم بايد سوم باشم كه ميام سوال جبر جواب ميدم نه؟! حالا نظر شما چيه؟
 
پاسخ : یک سوال احتمال

به نقل از زرينه :
اگه اشتباه نكنم بايد سوم باشم كه ميام سوال جبر جواب ميدم نه؟! حالا نظر شما چيه؟
نظر من این که شاید یه گوشه از کتاب جبرو خونده باشی! :دی
کتاب جبر رو اگه با دقت بخونی متوجه می شی که وقتی دو «یا بیش تر» زوج مرتب یکسان داریم فقط یکیش حساب می شه!
ولی در کل مشکل سوال داره!یعنی ناقصه!
ما نمی دونیم که تاس شماره 1 مولفه های اولمونه یا تاس 2 یا هردو می تونن که مولفه اول باشن!
در هر صورت این سوال به توضیح کامل تری نیاز داره!
 
پاسخ : یک سوال احتمال

بچه ها توروخدا يه جواب قطعي بدين ديگه.خسته شدم انقد بش فك كردم...
به نقل از رشید شاملی :
در کل مشکل سوال داره!یعنی ناقصه!
ما نمی دونیم که تاس شماره 1 مولفه های اولمونه یا تاس 2 یا هردو می تونن که مولفه اول باشن!
در هر صورت این سوال به توضیح کامل تری نیاز داره!
شما هم كه 2روزي يه بار مي گين سوال ناقصه!!! تا حالا چند بار سوالو گفتم.بهتر نيس دقيقن بگي كجاي سوال به نظرت گنگو ناقصه؟
 
پاسخ : یک سوال احتمال

به نقل از رشید شاملی :
نظر من این که شاید یه گوشه از کتاب جبرو خونده باشی! :دی
کتاب جبر رو اگه با دقت بخونی متوجه می شی که وقتی دو «یا بیش تر» زوج مرتب یکسان داریم فقط یکیش حساب می شه!
ولی در کل مشکل سوال داره!یعنی ناقصه!
ما نمی دونیم که تاس شماره 1 مولفه های اولمونه یا تاس 2 یا هردو می تونن که مولفه اول باشن!
در هر صورت این سوال به توضیح کامل تری نیاز داره!
خيلي متاسفم ولي نظرت يك نظر كاملا سطحيه.

"وقتی دو «یا بیش تر» زوج مرتب یکسان داریم فقط یکیش حساب می شه!"

ضمنا به نظرم اين جمله خيلي ايراد داره. اصلا فرض ميكنم شما درست ميگي.
يه مثال ميزنم ببين نظرت چيه. يه تاس داريم : 5 تا از وجهاش يك هستن و يه وجهش 2.
طبق نظرشما اگه اين تاس رو يه بار بنداريم فضاي نمونه ميشه يه مجموعه 2 عضوي --> {1,2} = S.
حالا ميخوايم احتمال آمدن وجهي كه روش يك نوشته رو به دست بياريم:
{1} = A.
اين يعني احتمال رخداد A( همون احتمال آمدن وجه 1) ميشه 1/2.
به تبع احتمال آمدن وجه 2 هم ميشه 1/2.
به نظر شما اين با عقل جور در مياد؟؟؟؟؟؟؟؟
راه حل بالا كاملا غلطه. فقط خواستم نشون بدم جمله اي كه نوشتي ايراد داره.
و گرنه واضحه كه احتمال ها ميشن 5/6 و 1/6.
 
پاسخ : یک سوال احتمال

به نقل از زرينه :
خيلي متاسفم ولي نظرت يك نظر كاملا سطحيه.

"وقتی دو «یا بیش تر» زوج مرتب یکسان داریم فقط یکیش حساب می شه!"

ضمنا به نظرم اين جمله خيلي ايراد داره. اصلا فرض ميكنم شما درست ميگي.
يه مثال ميزنم ببين نظرت چيه. يه تاس داريم : 5 تا از وجهاش يك هستن و يه وجهش 2.
طبق نظرشما اگه اين تاس رو يه بار بنداريم فضاي نمونه ميشه يه مجموعه 2 عضوي --> {1,2} = S.
حالا ميخوايم احتمال آمدن وجهي كه روش يك نوشته رو به دست بياريم:
{1} = A.
اين يعني احتمال رخداد A( همون احتمال آمدن وجه 1) ميشه 1/2.
به تبع احتمال آمدن وجه 2 هم ميشه 1/2.
به نظر شما اين با عقل جور در مياد؟؟؟؟؟؟؟؟
راه حل بالا كاملا غلطه. فقط خواستم نشون بدم جمله اي كه نوشتي ايراد داره.
و گرنه واضحه كه احتمال ها ميشن 5/6 و 1/6.
من چی بگم!؟
شما کلن فضای نمونه با احتمالو اشتباه گرفتی!
فضای نمونه یه چیزه و احتمال رخ دادن یه موضوع چیزه دیگری!
به نقل از PARADISE :
بچه ها توروخدا يه جواب قطعي بدين ديگه.خسته شدم انقد بش فك كردم...شما هم كه 2روزي يه بار مي گين سوال ناقصه!!! تا حالا چند بار سوالو گفتم.بهتر نيس دقيقن بگي كجاي سوال به نظرت گنگو ناقصه؟
خوب سوالت ناقصه دیگه!
من ساله پیش یه سوال در حد یک صفحه رو بردم پیش دبیر جبر و احتمال مدررسمون گفت:ناقصه!
خوب اون سوال خیلی ساده به نظر می رسید ولی با پر و بال دادن به صورت سوال به 12 جواب رسیدیم!
خداوکیلی راست می گم!
اگرم بخواین می تونم سوالشو بگم ولی خیلی تخصصیه!
دبیرمون با استفاده از منطق ریاضی حل کرد چون با احتمال می گفت اون قدر سخته که در حد من نیست!
حالا جالبه که این بشر فوق لیساسشو از دانشگاه تهران گرفته و الانم داره دکترا از فردوسی می گیره!
ما که دیگه به هیچ وجه در سطح اون اطلاع نداریم!
خانم پارادایس شما لطف کن دوباره سوالتو به طور کامل بگو تا سرش درست بحث کنیم!
 
Back
بالا