من یه توضیح کوتاه میدم اگر خواستید توضیح کاملترش رو میدم بعدا .
نگاه کنید این پارادوکس به این شکله که در گام اول میان کره رو به تعدادی زیرمجموعه ی جدا از هم افراز میکنن و بعد این هارو طوری انتقال یا دوران میدن ( بدیهتا این تبدیل ها حافظ حجم هستند . ) که بتونن دو کره بدست بیارن که این مخالف شهود طبیعی ما هست .
نکته ی اساسی این مساله اصل انتخاب هست ( یکی از صورت های اصل انتخاب به این صورت میشه بیان کرد که حاصلضرب یک خانواده از مجموعه های ناتهی ، ناتهی هست .)در واقع پذیرش یا عدم پذیرش اصل انتخاب مشکلاتی رو بدنبال داره .
در واقع ایده ی اصلی این پارادوکس از پوشش ویتالی گرفته شده ، که میشه حکم قوی تری رو به اثبات رسوند که بدین صورته برای هر دو مجموعه ی کراندار A و B که در درون ناتهی داشته باشند در فضای اقلیدسی *(که حداقل بعد فضا بیشتر از ۳ باشه . ) رو میشه طوری افراز کرد ( مثلا به A_i ها و B_i ها طوریکه هر A_i و B_i با هم هم نهشت باشن از نظر گروه تبدیلات اقلیدسی ( نمیدونم واژه ی هم نهشتی درسته یا نه ولی تعریف ریاضی دو مجموعه G-هم نهشت اینه که رای گروه تبدیلات G ، وجود داشته باشه g_i ای عضو G که داشته باشیم g_i(A_i)=B_i ) به راحتی از این فرم قوی تر میتونید پارادوکس عادی باناخ تارسکی رو نتیجه بگیرید کافیه که B رو دو کپی از A در نظر بگیرید .
* : علت اینکه این قضیه برای ابعاد ۱ و ۲ درست نیست اینه که اگر گروه تبدیلات اقلیدسی یعنی E(n رو در نظر بگیرید ، در این ابعاد این گروه Solvable هست اما در ابعاد بالاتر شامل یک گروه آزاد با دو مولد خواهد بود . ( در واقع میشه شرط لازم و کافی رو برای ایجاد یک چنین تناقضی رو با بررسی این گروه ها پیدا کرد که مثلا میشه به این صفحه مراجعه کنید :
https://en.wikipedia.org/wiki/Amenable_group )
نگاه کنید در واقع این مدل نتاقضات که با اصل انتخاب سروکار دارند زیادن ، مثلا به کمک این اصل میتونید ثابت کنید که هر مجموعه ای از R زیر مجموعه ای داره که نمیشه اندازه احتمال براش تعریف کرد ( اندازه پذیر نیست ) که این هم با شهود ما مطابقت نداره .
پی نوشت : من صفحات قبلی رو که نگاه کردم خیلی ناراحت شدم و به نظرم همچین سوالات بدی مطرح شدند ،واقعا کتابهای خیلی خوبی در زمینه ی تاپیک وجود داره مثلا محافل ریاضی ( که به نظرم سوالهای جالبی داره در زمینه ی تاپیک ) یا انتشارات فاطمی خیلی یادمه کتابهای ریاضیات دبیرستانی خوبی داشت !